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Abstract. It is shown that the recursion relations for the filling fractions of fractional quantum
Hall states in double-layer electron systems proposed by M Greiter and I A McDonald can
be expressed in a ‘matrix continued fraction form’. We extend this matrix continued fraction
form to multi-layer electron systems and show that under some physical restrictions the matrix
continued fraction form is reduced to the usual numerical continued fraction.

1. Introduction

Recently, the hierarchy of fractionally quantized Hall states of Haldane [1] and Halperin [2]
has been extended to the double-layer electron systems by Greiter and McDonald [3]. The
crucial thing about the double-layer systems is that one can have two kinds of electron by
introducing an index to indicate in which of the two layers the electrons reside. The layer
index can be treated as a kind of quantum number, called ‘pseudo-spin’, in close analogy
to the spin of the electrons. Thus, the double-layer electron systems have an additional
degree of freedom, which allows the Laughlin wavefunction to abide in the Pauli principle
yet describes a fractional quantum Hall effect (FQHE) state with even-denominator filling
fraction. Similar to the single-layer Haldane–Halperin (HH) hierarchy [1, 2], the hierarchy
for double-layer systems (hereafter we term it the Greiter–McDonald (GM) hierarchy) is
also based on the idea that quasiparticles themselves condense into a state similar to the
primary state. This procedure can be iterated, and filling fractions with odd as well as even
denominator appear within this picture at various levels of the GM hierarchy.

In this paper, we will point out that the recursion relations for the filling fractions of
the GM hierarchy can be expressed in a matrix continued fraction form which is applicable
to multi-layer electron systems. We show that under some physical restrictions the filling
fractions of the matrix continued fraction form are reduced to the usual numerical continued
fractions.

The remainder of this paper is presented as follows. In the next section we review
the main arguments leading to the GM hierarchy and point out that the recursion relations
for the filling fractions of the GM hierarchy can be expressed in the matrix continued
fraction form. Then we show that under some physical restrictions the filling fractions of
the matrix continued fraction form are reduced to the usual numerical continued fractions.
We generalize the arguments for double-layer systems to triple- and multi-layer systems in
section 3, emphasizing that the matrix continued fraction form for the filling fractions is
applicable to the many-layer case. We conclude with remarks on some important properties
of the numerical continued fractions appearing in the text.
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2. Review of hierarchy for double-layer systems

In a seminal paper Greiter and McDonald [3] have extended the HH hierarchy to the case
of double-layer electron systems. Even though the underlying ideas were developed for
double-layer systems, they are sufficiently general that they can be appliedmutatis mutandis
to triple-layer as well as multi-layer systems. Let us therefore review the main arguments
of Greiter and McDonald.

Let the two-component Laughlin wavefunction in the spherical geometry be
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whereu1
i , v

1
i and u2

i , v
2
i are the spinor coordinates for the electrons in the first and the

second layer, respectively. Each electron coordinate is represented in each term of the
wavefunction by a polynomial inuki andvki of total degree 2Sk, wherek = 1 and 2 for the
first and the second layer, respectively, and 2Sk is the flux through the surfacek in units of
the flux quantum. This is formally expressed through the operator

2Ŝk = uki (∂/∂uki )+ vki (∂/∂vki ) k = 1, 2 (2)

where the eigenvalue is constrained to be 2Sk for every electroni. Using the operator (2)
with the wavefunction (1) for the first-layer coordinatesu1

i , v
1
i , we find

2S1 = Nφ = m1(N1− 1)+ nN2 (3)

whereNφ denotes the flux number andN1 andN2 are the numbers of electrons in each
layer (1 and 2 refer to the first and second layers, respectively). For the second layer, we
find

2S2 = Nφ = m2(N2− 1)+ nN1. (4)

Equations (3) and (4) can be expressed in the following matrix form:(
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)
. (5)

In the spherical geometry, we can identify the excitation operators analogous to those
proposed by Laughlin. We imagine adiabatically piercing the system with a unit of flux
quantum, either forming a charge deficiency (quasihole) or a charge surplus (quasiparticles),
depending on the direction of the extra flux. This has the effect of multiplying (1) by
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for the quasiholes or
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for the quasielectrons, whereNex,1 andNex,2 are the numbers of excitations in the respective
layers.α andβ are constants. The operations (6) and (7) increase and decrease the number
of flux quanta 2Sk through the surfacek by one unit, respectively, creasing fractionally
charged defects. From equations (1), (6) and (7), we obtain the quasihole (QH) and
quasielectron (QE) wavefunctions as follows:
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Using the operator (2) with the wavefunctions (8) and (9), we find that the presence of
the quasiparticles will alter the flux–number relationship to become(
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wherem1 andm2 are odd,n is an integer andα1,2 = 1 for quasiholes andα1,2 = −1 for
quasielectrons. Symbolically, we can write (10) in the following form:

2S = [m] ·N − {m} + αNex (11)

where [m] is a 2× 2 matrix, and{m} a two-dimensional vector.
We can extend the reasoning that led to (10) to find a flux–number relationship for the

excitations given by(
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wherep1 andp2 are even andq is an integer. Similar to (11), (12) can be symbolically
written as

N = [p] ·Nex − {p}. (13)

From (11) and (13), we have

2S = [m,αp] ·N − {m,αp} (14)

where

[m,αp] = [m] + α[p]−1 (15)

is the inverse filling fractionν−1, and

{m,αp} = {m} − α[p]−1 · {p} (16)

is the flux shiftNshif t . According to (15), the filling fraction can be formally expressed in
the following matrix continued fraction form:

ν = 1

[m,αp]
= 1

[m] + α/[p]
(17)

where the inversion of matrices [p] and [m,αp] is formally expressed by 1/[p] and
1/[m,αp], respectively, andα = 1 for quasiholes and−1 for quasielectrons.

At this point, we note that, following the steps that led to (17), the filling fraction at
the n-level of the hierarchy can be written as

ν = 1
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= 1
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i = 1, 2, . . . , n.

Whenn = 1, (18) is reduced to (17). (18) can be easily proved by mathematical induction.
It should be noted that (18) has two important special cases.
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(i) For [m] = m, [pi ] = pi andαi1 = αi2 = αi , wherem is odd,pi even andαi = ±1,
(18) is reduced to the HH hierarchy. Since we have ignored the tunnelling between the two
layers, in the vanishing-Zeeman-splitting (VZS) limit, each layer is expected to have the
same spin states. For instance, the spin states of the Laughlin sequence withν = 1/(2k+1)
(k an integer) are fully polarized (spinless); the states withν = 2/(2k + 1) are spin-
unpolarized (spin-singlet). Also, the state atν = 3/5 has been found to be partially
polarized by an exact diagonalization study [4], in agreement with experiments [5]. It is
well known that in the HH hierarchial picture, the elementary excitations in the state with
filling fraction ν = k/(2k + 1) have charge±e/(2k + 1) [1, 2].

(ii) For

[m] =
(
m n

n m

)
[pi ] =

(
pi qi
qi pi

)
αi = ±1 i = 1, 2, . . . , n (19)

(18) can be expressed as

ν = 1

m+ n+ α1/{p1+ q1+ α2/[p2+ q2+ · · · + αn/(pn + qn)]} . (20)

Physically, (19) implies the following three things:

(i) for a primary state (m,m, n), the intralayer correlations in both layers are equal to
m and the interlayer correlations aren;

(ii) all daughter states (pi, pi, qi) have similar correlations as the parent state (m,m, n),
namely, at theith level of the hierarchy the intralayer correlations in both layers are equal
to pi and the interlayer correlations areqi ;

(iii) αi = 1 or −1 denotes that the constituents of theith-level daughter state are all
charged according to the same sign, implying repulsive correlations between quasiparticles
in both interlayer and intralayer.

Under such three physical restrictions, then-level matrix continued fraction form (18)
is reduced to the usual numerical continued fractions (20). In this case, both layers have the
same filling fractions. Most of the filling fractions calculated in [3] are contained in (20).
Especially, the primary state (m,m, n) of (20) form = 3 andn = 1, which corresponds to
the total filling fractionν = 1/2, has been observed by Eisensteinet al [6] and others [7].
At present, although the hierarchial states predicted by (20) have not been experimentally
observed, we do believe that these states are existing and reasonable. The reasons are the
following.

First, the three physical restrictions leading to (20) are reasonable and the resultant
numerical continued fractions are similar to the Haldane continued fractions for a single
layer system.

Second, the HH hierarchy played a very important role in the infancy of the fractional
quantum Hall theory. From the current point of view, the HH hierarchy is not completely
satisfactory, but the hierarchy approach is still a good starting point for refined theories
[8]. In our opinion, such situations will appear again in the studies of two-layered systems,
namely, at the primary stage, we do need a hierarchy approach for two-layered systems
similar to the HH hierarchy for a single-layer system.

Third, this hierarchy approach can give the scope of the fractional states for two-
layered systems and draw the experimentalists’ attentions to these states. We believe that,
with improvement of the sample quality, the hierarchial states predicted by (20) can be
experimentally observed.

According to our experience in studying the HH hierarchy, we can make, in the VZS
limit, the following speculations about the spin states of (20):
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(i) all even-numerator states [such asν = 2/(2k + 1)] are spin unpolarized;
(ii) all even-denominator states are also spin unpolarized;
(iii) all states with both the numerator and denominator (of filling fraction) odd are

partially/fully polarized.

We expect that the above speculations can be testified experimentally in the near future.
It should be noted that Lopez and Fradkin [9] have shown that the double-layer systems

can be treated by the fermion Chern–Simons (CS) theory, namely, a theory of interacting
fermions (which hasθ = 0, with θ the coefficient of the CS action; for the double-layer
systemsθ is a 2× 2 matrix) is equivalent to a family of theories of fermions withθ being
such that the electrons are attached to an even number of fluxes of the CS gauge field in
their own layer and to an arbitrary number of fluxes of the CS gauge field in the opposite
layer. In this form, the theory has aU(1) ⊗ U(1) gauge invariance. A direct inspection
of the allowed fractions, (20) and (2.13) [9] shows that they do not yield the same allowed
fractions. Therefore, the two hierarchies are not completely equivalent.

In the following section, we further generalize these considerations to triple- and multi-
layer systems.

3. Hierarchy for triple- and multi-layer systems

In this section, we generalize the arguments in the previous section to triple- and multi-layer
systems. First of all, let us write down the counterpart of (1) for triple-layer systems.
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whereu1
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i and u3
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i are the spinor coordinates for the electrons in the first,

second and third layers, respectively. Similar to (8) and (9), we have the quasihole and
quasielectron wavefunctions for triple-layer systems as follows:
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Using the operator (2) withk = 1, 2, 3 with the wavefunctions (22) and (23), we find( 2S1
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wherem1, m2 andm3 are odd,n12, n23 and n13 even andα1,2,3 = 1 for quasiholes and
α1,2,3 = −1 for quasielectrons. Symbolically, (24) can be expressed by (11), but in this
case [m] is a 3× 3 matrix and{m} a three-dimensional vector.

Similarly, the form of (18) is applicable to the triple-layer systems with

[m] =
(
m1 n12 n13

n12 m2 n23

n13 n23 m3

)
[pi ] =

(
pi1 qi12 qi13

qi12 pi2 qi23

qi13 qi23 pi3

)

αi =
(
αi1 0 0
0 αi2 0
0 0 αi3

)
i = 1, 2, . . . , n. (25)

Let us discuss two special cases of (25).

(i) For

m1 = m2 = m3 = m n12 = n23 = n13 = n
pi1 = pi2 = pi3 = pi qi12 = qi23 = qi13 = qi (26)

αi1 = αi2 = αi3 = αi = ±1

(18) is reduced to

ν = 1

m+ 2n+ α1/{p1+ 2q1+ α2/[p2+ 2q2+ · · · + αn/(pn + 2qn)]} . (27)

Physically, (26) implies that

(a) for a primary state (m,m,m, n, n, n), the intralayer correlations in three layers are
equal tom and the interlayer correlations between any two layers aren;

(b) all daughter states (pi, pi, pi, qi, qi, qi) have similar correlations as the parent state
(m,m,m, n, n, n), namely, at theith level of the hierarchy, the intralayer correlations in
three layers are equal topi and the interlayer correlations between any two layers areqi ;

(c) αi = 1 or −1 denotes that the constituents of theith-level daughter state are all
charged according to the same sign, implying repulsive correlations between quasiparticles
in both intralayer and any two layers.

(ii) Let us then consider a primary state (m1, m2, m3, n, n) characterized by(
m1 n 0
n m2 n

0 n m3

)
. (28)

Physically, (28) implies that the intralayer correlations in theith layer are characterized
by mi (i = 1, 2, 3) and each layer correlates only with its nearest layers as well as all
interlayer correlations are equal ton. Calculating the sum of all the entries of theith
column (or row) of the inverse matrix of (28), we find that the filling fractions for each
layer are

ν =
(
ν1

ν2

ν3

)
= 1

1

(
m3(m2− n)

m1m3− (m1+m3) · n
m1(m2− n)

)
(29)

where1 = m1m2m3 − (m1 + m3) · n2. Some examples of (29) have been discussed by
MacDonald in [10]. Especially, whenmi = 3 andn = 1, ν = 5/7. This should be the
triple-layer system analogue of theν = 1/2 effect observed by Eisensteinet al [6] and
others [7].
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On the basis of the discussions mentioned above, (18) is also applicable to multi-layer
systems. ForM-layer systems, (25) becomes

[m]M =


m1 n12 . . . n1M

n12 m2 . . .
...

...
. . .

...

n1M . . . . . . mM

 [pi ]M =


pi1 qi12 . . . qi1M

qi12 pi2 . . .
...

...
. . .

...

qi1M . . . . . . piM



αi =


αi1 0 . . . 0
0 αi2 . . . 0
...

...
. . .

...

0 0 . . . α1M

 i = 1, 2, . . . , n. (30)

Similarly, we consider two special cases of (30).

(i) For all diagonal elements of the matrices [m]M and [pi ]M are equal tom and
pi , respectively, and all off-diagonal elements aren and qi , respectively, andαij = ±1,
j = 1, 2, . . . ,M, (18) is reduced to

ν = 1

m+ (M − 1)n+ α1

p1+ (M − 1)q1+
α2

p2+ (M − 1)q2+ . . .+ αn

pn + (M − 1)qn
. (31)

Following the discussions mentioned above, the physical implications leading to (31) are
clear. Obviously, (20) and (27) are the special cases of (31) forM = 2 and 3, respectively.

(ii) Let us consider the following symmetric tridiagonal coupling matrix:

m1 n 0 . . . 0 0
n m2 n . . . 0 0

0 n m3
...

. . . . . .
. . .

...

. . . . . .
. . . n

0 0 . . . . . . n mM


. (32)

This matrix is very interesting because it corresponds to the nearest-neighbour interlayer
correlation which is more likely to be realized experimentally, Especially, when the number
of layersM is large, the electron system may be regarded as three dimensional [11]. In
fact, if one has the technology to grow many layers of heterojunctions, it is even possible to
realize a three-dimensional FQHE in the laboratory described by the coupling matrix (32).

4. Conclusions

The hierarchy of quantized Hall states in the double-layer electron systems has been
straightforwardly extended to the cases of triple-layer as well as multi-layer electron systems
by developing a matrix continued fraction form for the filling factors. We have shown that
under some physical restrictions the matrix continued fraction form can be expressed as
the usual numerical continued fraction (31), which contains most of the filling fractions
appearing in the literature. The most manifest property of our formulation (31) is that each
layer has the same filling fraction with either odd or even denominator according to the
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concrete values of the parameters in the matrices (30). We believe that with the progress
of the technology, many fractional quantum states included in (31) will be discovered
experimentally in the near future.
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